skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azim, Mohammad F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Plasmodesmata (PD) allow direct communication across the cellulosic plant cell wall, facilitating the intercellular movement of metabolites and signaling molecules within the symplast. InArabidopsis thalianaembryos with reduced levels of the chloroplast RNA helicase ISE2, intercellular trafficking and the number of branched PD were increased. We therefore investigated the relationship between alteredISE2expression and intercellular trafficking.Gene expression analyses in Arabidopsis tissues whereISE2expression was increased or decreased identified genes associated with the metabolism of glucosinolates (GLSs) as highly affected.Concomitant with changes in the expression of GLS‐related genes, plants with abnormalISE2expression contained altered GLS metabolic profiles compared with wild‐type (WT) counterparts. Indeed, changes in the expression of GLS‐associated genes led to altered intercellular trafficking in Arabidopsis leaves. Exogenous application of GLSs but not their breakdown products also resulted in altered intercellular trafficking.These changes in trafficking may be mediated by callose levels at PD as exogenous GLS treatment was sufficient to modulate plasmodesmal callose in WT plants. Furthermore, auxin metabolism was perturbed in plants with increased indole‐type GLS levels. These findings suggest that GLSs, which are themselves transported between cells via PD, can act on PD to regulate plasmodesmal trafficking capacity. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria- and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain.IPI1/emb175/PPR103is a nuclear gene encoding a PLS-type PPR protein essential for survival inArabidopsis thalianaand maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis andNicotianaIPI1 orthologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. In this study we examined the function of IPI1 in chloroplast RNA processing inN. benthamianato gain insight into the importance of the DYW domain to the function of the EMB175/PPR103/ IPI1 proteins. Structural predictions suggest that evolutionary loss of residues identified as critical for catalyzing C-to-U editing in other members of this class of proteins, were likely to lead to reduced or absent editing activity in theNicotianaand Arabidopsis IPI1 orthologs. Virus-induced gene silencing ofNbIPI1led to defects in chloroplast ribosomal RNA processing and changes to stability ofrpl16transcripts, revealing conserved function with its maize ortholog.NbIPI1-silenced plants also had defective C-to-U RNA editing in several chloroplast transcripts, a contrast from the finding that maize PPR103 had no role in editing. The results indicate that in addition to its role in transcript stability, NbIPI1 may contribute to C-to-U editing inN. benthamianachloroplasts. 
    more » « less